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BUCKLING OF A FERROMAGNETIC CIRCULAR RING
IN A RADIAL MAGNETIC FIELD
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Abstract-A possibility of the elastic buckling of a ferromagnetic circular ring in a radial magnetic field is
theoretically investigated. A dipole description for the magnetization and a principle of virtual work are
used to derive the equilibrium equations of the ring. The inextentionality of the buckling deformation is
assumed. It is found that the ferromagnetic ring may buckle when the radial magnetic field reaches a critical
value.

INTRODUCTION

The elastic buckling of ferromagnetic beams and plates in transverse magnetic fields has been
studied by a number of investigators [1-8] in the recent past. One is naturally led to ask if
similar phenomena are possible for a elastic ferromagnetic ring in a radial magnetic field.
However, this problem is somewhat academic since radial magnetic field can only exist near the
end of a bar magnet or solenoid. Hence, to the best of our knowledge, no results exist in the
case of ferromagnetic rings.

The purpose of this paper is to show theoretically a possibility of the elastic buckling of a
ferromagnetic circular ring in a radial magnetic field. In the present analysis, the following
assumptions are employed, because of the interdisciplinary nature of the problem. The thin ring
is composed of soft, linear, homogeneous ferromagnetic material and placed in a stationary
radial magnetic field with no electric fields, charge distributions, or conduction currents. The
magnetostrictive effect is negligible. Under these assumptions, the effect of the external
magnetic field on the ring is represented by using a dipole model for magnetization. On the basis
of the strain-displacement relations of Fliigge's shell theory, the equations governing the
behavior of rings in radial magnetic fields are derived with the aid of the principal of virtual
work. Assuming the inextensional buckling deformation, the simple expression of the critical
magnetic field is obtained. It is found that the critical radial magnetic field is proportional to the
three-halves power of the thickness-to-radius ratio of the ring.

MAGNETIC FORCES

A ferromagnetic, thin circular ring with unit width, radius R and thickness h is considered to
be set in a radial magnetic field of induction vector 80 = BoC.RIr)k. The polar coordinate system
and three unit vectors are taken as shown in Fig. 1. Let z denote distance from neutral axis of
the ring, positive outward.

We assume a stationary radial magnetic field with no electric field, charge distributions, or
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Fig. 1. Dimensions and coordinate system of the ring.
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conduction currents. Under these assumptions, Maxwell's equations become

vx H =0, V· B =0 (1)

where V is the two-dimentional gradient operator, while Hand B are the magnetizing force and
the magnetic flux density, respectively. In the magnetic materials, the magnetization vector M is
defined by B = #Lo(H +M), where #Lo is a universal constant. In a vacuum, B = #LoB. For soft
linear ferromagnetic materials neglecting magnetostrictive effects, we assume M = XH, where X
is the magnetic susceptibility. Equation (1) is satisfied if

(2)

We assume that the edge effect of the ring on the magnetic field is negligible. Hence, the
boundary conditions on the surface of the ring are

(3)

where n is a unit vector normal to the surface of the ring, while the signs + and - denote the
field quantities outside and inside the ring, respectively.

According to the dipole model for the magnetization, the body force and moment per unit
length on the magnetized ring are given by

i

R+hl2 iR+hl2
fk = (M . V)Bor dr, ci = M x Bor dr.

R-hl2 R-hl2
(4)

PREBUCKLING STATE

It may be expressed that the prebuckling deformation is axisymmetric and not so large.
Hence, on the basis of FIligge's shell theory, the relations among stress, strain and displacement
of the ring are expressed as

Ewo
Uo=EEo=-­R+z

(5)

where E and wo are Young's modulus and the radial displacement, respectively. The stress
resultant and moment are given by

f
hl2 Eh( h2

) fhl2 Eh
3

No = -h/2 Uo dz = If 1+ 12R2 wo, Mo= -h/2 UoZ dz = - 12R2 woo (6)

For the axisymmetric deformation, we have n = k. Therefore, the following equation is
obtained from eqns (2) and (3).

(7)

Substitution of eqn (7) into eqn (4) yields

The principle of virtual work yields as follows:

1
2"fhl2 12"E EoMo(R + z) dz dB = fo~wo dB.

o -11/2 0

(8)

(9)
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Substituting eqns (5), (6) and (8) into eqn (9) and integrating, we obtain
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(10)

For the thin ring made of ferromagnetic materials (X - 104
), where 1~ h/2R > I/X, the above

equation becomes

N.
'- _ Bozh

0"'" •
1L0

(11)

BUCKLING EQUATION

In order to investigate whether the axisymmetric deformation becomes unstable, we now
consider the asymmetric buckling with bifurcation of the ring. Denoting by v and w the small
incremental displacement components along the neutral axis during buckling and according to
FIiigge's shell theory, the relations among the incremental stress, strain and displacements are
expressed by

u = BE = B(EI + EZ), UI = BEh Uz = BEz

1 z lIz z]
EI =RV.8 - R(R +z) W.88 +R +z W, Ez = 2Rz[(v.8 + w) + (W.8 - v) .

Immediately after buckling, the magnetic field quantities may be written as

(12)

(13)

in which Bh HI and <1>1 describe the disturbed field due to the buckled ring. The equation
governing the disturbed field is obtained from eqns (2) and (13) as

(14)

Since the displacements wand v are small compared with the ring thickness, we can expand the
magnetic field quantities of the surface of the buckled ring in Taylor's series about r = ro ==
R + wo± h/2[9], and obtain the magnetic flux density as follows:

B(rok + wk + vj)::; Bo(rok) +[(wk + vj)' V]Bo(rok) +B.(rok).

The unit vector normal to the surface of the buckled ring is given by

n=k-wj

where the small rotation w of the neutral axis of the ring is given by

1
w = R(w.8 - v).

(15)

(16)

(17)

Substituting eqns (15) and (16) into eqn (3) and keeping only the first terms in the displacement,
we obtain

By using <1>1-, the body force and moment on the magnetized ring during buckling are given
from eqn (4) as

(19)
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By considering the equilibrium eqn (9) at impending buckling, the variational equation of
equilibrium during buckling can be given as

(20)

Assuming the inextensionality for the buckling deformation, i.e. V.e = - w, we obtain the
following equation from eqn (20) as

(21)

where

(22)

Using eqns (6), (8) and (IO), we finally obtain the buckling equation from eqn (21) as follows:

METHOD OF SOLUTION

Considering the inextentionality for the buckling deformation, we assume the general
solution of the form

A
W = A sin nO, v=;; cos nO, <'P t =4>(r) sin nO (24)

where A is an unknown parameter and n (~2) is an integer corresponding to the number of
circumferential waves. Substitution of eqn (24) into eqns (14) and (18) yields

4>." +~</l., -?</l '" 0 (25)

cf>+_cf>-=_(n
2

-l)xABo <f>.~-(l+X)4>,~=O at r=R+wo±-2h. (26)
n21Lo(1 +X) ,

A solution of eqn (25) is given by

(27)

in which the arbitrary constants aJ-4 are determined from the boundary condition (26). Hence,
we obtain the following equations:

(28)

where
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Substitution of eqn (28) into eqn (19) yields

(n
2
-1)ABo

2 (h)3 . )II = - 3nJLoQST R sm n8

_ 2(n
2

- I)ABo
2

h(1 + wo) 8CI- - - cos n .
nJLoQ R

Substituting eqns (24) and (30) into eqn (23), and considering A# 0, we obtain
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(30)

_n2(n 2_1)2+ l:~i {2(n2_1)2(~)lrST( 1+ 1~~2)rl

- h[n(;;~ 1) +(n2_1)2(~Y(S + T)]}
= O. (31)

When n = 2, we obtain the minimum value of Bo from eqn (31). This value corresponds to the
critical magnetic field Boc for which the ring becomes unstable.

B~c {(R)2[ ( h
2 )]-1 1[2 (R)2 ]}-IJLoE= 6 Ii rST 1+ 12R2 - Q 3ST+ 3 Ii (S+ T) (32)

We notice from eqn (31) that the magnetic body moment has predominant effect on the
magnetoelastic buckling of the ring in radial magnetic fields. Neglecting I/X, wo/R and h/2R in
comparison with unity, we obtain

(33)

This simple expression states that the critical magnetic field is independent of the magnetic
susceptibility.

CONCLUSION

Theoretically, it is shown that the ferromagnetic ring may buckle when the radial magnetic
field reaches a critical value. It is the magnetic body moment that dominates the magnetoelastic
buckling of the ring. The critical radial magnetic field is proportional to the three-halves power
of the thickness-to-radius ratio of the ring.
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